

Metabolome of *Eucalyptus* oil glands; Phytochemical screening of glandular extracts of Eucalyptus pumila, E. gillenii and E. parvula

Samiddhi L. Senaratne, Jason Q. D. Goodger, Shyama Fernando, Ian E. Woodrow, School of BioSciences, Faculty of Science, The University of Melbourne; samiddhil@gmail.com

Cypellocarpin C

most abundant oil

cineole (Table 1)

component was 1,8-

Introduction

- The presence of sub-dermal glands rich in volatile terpene essential oils is characteristic of the Genus Eucalyptus (Myrtaceae)
- Non-volatile compounds (NVCs), monoterpene acid glucose esters (MAGEs) and few phenolics, were reported from glands of some Eucalyptus species, however, their ubiquitous nature is unknown
- Objective to characterise the NVCs and oil components localised to foliar oil glands of Eucalyptus pumila, E. gillenii and E. parvula

Methodology

GC-FID/GC-MS - gas chromatography with ame ionisation detection and mass spectrometr HPLC/LC-MS -high-performance liquid chromatography and mass spectrometry

Figure 1: Method followed to identify contents in foliar oil glands of Eucalyptus species

Results

Figure 3: Oil glands isolated from Eucalyptus species. (A) E. pumila (B) E. gillenii (C) E. parvula. All scale bars represent 200 µm

- MAGEs; cuniloside B, cypellocarpin C and froggattiside A were present in glandular extracts of all three species
- Four novel MAGEs were also present in the extracts of E. parvula while E. pumila had a [C₁₆H₂₄O₇+H] m/z 329.15 single novel MAGE $2(H_2O)$ $[C_{16}H_{22}O_6 + H]^+$

Conclusions

Foliar glands of *Eucalyptus* species co-house MAGEs and volatile oil components suggesting a possible biosynthetic / physiological relationship between the two groups

Table 1: Quantification of mono- and sesquiterpenes in Eucalyptus leaf extracts. (A) E. pumila (B) E. aillenii (C) E. parvula

Cypellocarpin C				
		(A)	(B)	(C)
The second secon	Total oil (mg g ^{−1} leaf DW)	55.2	21.9	37.9
он How of Froggattiside A	% of monoterpenes			
Che	1,8-cineole	75.5	58.1	69.2
	Limonene	1.5	1.4	2.7
HON' OH Cuniloside B	α-pinene	5.0	0.9	3.2
	β-pinene	0.1	0.3	0.1
Figure 4: MAGEs identified from <i>Eucalyptus</i> foliar oil glands	Linalool	0	0	0.4
	α-terpineol	0.7	1.1	0.4
	p-cymene	1.1	4.5	0.9
 Volatile oil; Leaf extracts 	% of sesquiterpenes			
from all three species	β-eudesmol	0.1	0.1	0.2
contained monoterpenes	α-caryophyllene	1.0	0	3.9
and sesquiterpenes. The	Spathulenol	0	9.2	0.2

References

Goodger JQD, Cao B, Jayadi I, Williams SJ, Woodrow IE (2009) Non-volatile components of the essential oil secretory cavities of Eucalyptus leaves: Discovery of two glucose monoterpene esters, cuniloside B and froggattiside A. Phytochemistry 70, 1187-1194.

Acknowledgements

Special thanks to Holsworth Wildlife Research Endowment, The School of Botany Foundation and Metabolomics Australia

fragmentation of oleuropeic acid glucose esters resulting in the characteristic ion fragments of m/z 311.14 and 329.15

Figure 2: Schematic of the

m/z 311.14

3rd Conference - College of Biochemists of Sri Lanka 24.07.2021