In silico identification of a bacterial AlmA-like protein in Aspergillus flavus NRRL 3357

Priyatharshan Viswanathan, Madushika Perera, Sharmila Jayasena^{*} Department of Biochemistry and Molecular Biology, University of Colombo – Faculty of Medicine, Sri Lanka^{*}

Introduction	Methodology	Results	Superimposed image of
Accidental leak of crude oil during transport or storage poses a great environmental threat. Bioremediation is an effective method used to mitigate the effects of pollution on a large scale. AlmA enzymes found in bacteria are capable of degrading long-chain alkanes(C>32). Fungal AlmA enzymes that can use long chain alkanes as substrates have not been previously characterized . This study focuses on using an <i>in-silico</i> approach to identify a fungal AlmA homologue from <i>Aspergillus flavus</i> NRRL3357.	Verified bacterial AlmA sequence (UniProtKB).	Superimposition with model 1 gave the lowest RMSD	bacterial AlmA (pink) and fungal AlmA (blue)
	PSI-BLAST (20,000 sequences retrieved).	value (0.547 Å). The validity of model 1, was further	
	Aspergillus flavus NRRL 3357 sequences selected.	evaluated using ERRAT (87.7895), VERIFY3D (83.02 %) and PROCHECK	
	Similar domain search in Pfam database.	(92.1%)	
	3D model preparation I-TASSER	Validation scores demonstrate that model 1 is reliable. Together, these results indicate that the selected <i>A. flavus</i> sequence represents an AlmA-like monooxygenase, suggesting that AlmA-like enzymes present in <i>A. flavus</i> may play a role in degradation of long chain alkanes.	
	Superimposition of fungal and bacterial AlmA.		
	Analysis using ERRAT, VERIFY3D and PROCHECK.	Conclusion	
			sive evidence that the <i>Aspergillus flavus</i> NRRL 3357 has an bacterial enzyme AlmA.

۲